Español Inglés
Acceso usuarios


Somos el mayor portal de recursos de oncología

Con la creación de esta plataforma, pretendemos proporcionar un medio que unifique todo lo que el oncólogo necesita en el día a día, de forma dinámica y actualizada, sin necesidad de tener que abrir diferentes aplicaciones o páginas web.


Improving Skin cancer Management with ARTificial Intelligence (SMARTI): protocol for a preintervention/ postintervention trial of an artificial intelligence system used as a diagnostic aid for skin cancer management in a specialist dermatology setting


The first prospective clinical trial to evaluate the safety and performance of an artificial intelligence (AI) diagnostic aid for skin cancer detection and management in the real-world clinical setting. Participants are recruited on a consecutive basis from routine attendance at melanoma and skin cancer assessment clinics, forming a representative sample of patients and lesion phenotypes from which to evaluate AI algorithm performance. AI performance will be compared with teledermatologists' assessment, as well as to face-to-face assessors of varying clinical experience (registrars and consultant dermatologists), and with histopathology results for biopsied lesions.

Predictive Machine Learning Models and Survival Analysis for COVID-19 Prognosis Based on Hematochemical Parameters


The coronavirus disease 2019 (COVID-19) pandemic has affected hundreds of millions of individuals and caused millions of deaths worldwide. Predicting the clinical course of the disease is of pivotal importance to manage patients. Several studies have found hematochemical alterations in COVID-19 patients, such as inflammatory markers. We retrospectively analyzed data from a cohort of 303 patients with reverse transcription-polymerase chain reaction (RT-PCR) confirmed COVID-19, during the first phase of the COVID-19 global pandemic from 14 March to 10 September 2020. Statistical methods and survival analysis, together with the development of machine learning classifiers, were carried out on these data, with the purpose of identifying hematochemical parameters that better reflect and contribute to the risk assessment.


Prediction of genetic alterations from gastric cancer histopathology images using a fully automated deep learning approach


Studies correlating specific genetic mutations and treatment response are ongoing to establish an effective treatment strategy for gastric cancer (GC). To facilitate this research, a cost- and time-effective method to analyze the mutational status is necessary. Deep learning (DL) has been successfully applied to analyze hematoxylin and eosin (H and E)-stained tissue slide images.

COVID-19 vaccines in adult cancer patients with solid tumours undergoing active treatment: Seropositivity and safety. A prospective observational study in Italy.


Cavanna L, Citterio C, Biasini C, Madaro S, Bacchetta N, Lis A, Cremona G, Muroni M, Bernuzzi P, Lo Cascio G, Schiavo R, Mutti M, Tassi M, Mariano M, Trubini S, Bandieramonte G, Maestri R, Mordenti P, Marazzi E, Vallisa D.

Eur J Cancer. 2021 Nov;157:441-449. doi: 10.1016/j.ejca.2021.08.035. Epub 2021 Sep 2.
PMID: 34601285​

Analyzing the impact of Machine learning and Artificial intelligence and its Effect on Management of lung cancer detection in covid-19 pandemic


Cancer victims, particularly those with lung cancer, are more susceptible and at higher danger of COVID-19 and associated consequences as a result of their compromised immune systems, which makes them particularly sensitive. Because of a variety of circumstances, cancer patients' diagnosis, treatment, and aftercare are very complicated and time-consuming during an epidemic. In such circumstances, advances in artificial intelligence (AI) and machine learning algorithms (ML) offer the capacity to boost cancer sufferer diagnosis, therapy, and care via the use of cutting technologies

Towards Machine-Readable (Meta) Data and the FAIR Value for Artificial Intelligence Exploration of COVID-19 and Cancer Research Data Even before COVID-19, the bioinformatics labs and life science industry were investing extensively in ecosystems of techno


Even before COVID-19, the bioinformatics labs and life science industry were investing extensively in ecosystems of technological and analytical applications/appliances to store, curate, share, integrate, and analyze large amounts of data. With the pandemic coming at an accelerating pace, a series of global research actions are being implemented to strive against the virus and its effects and to create data-driven investigations to support more agile responses to future events. Innovative solutions in COVID-19 research require more efficient and effective data management strategies and practices. Cancer research is an excellent example of the adoption of the FAIR (Findable, Accessible, Interoperable, and Reusable) data principles on precision oncology and major cancer data repositories, such as the NIH Cancer Research Data Commons, are gradually adhering to these principles.

Buzón de sugerencias
Diseño y Desarrollo web Im3diA comunicación

Bienvenida/o a la información básica sobre las cookies de la página web responsabilidad de la entidad: Grupo Arán de Comunicación S.L..

Una cookie o galleta informática es un pequeño archivo de información que se guarda en tu ordenador, “smartphone” o tableta cada vez que visitas nuestra página web. Algunas cookies son nuestras y otras pertenecen a empresas externas que prestan servicios para nuestra página web.

Las cookies pueden ser de varios tipos: las cookies técnicas son necesarias para que nuestra página web pueda funcionar, no necesitan de tu autorización y son las únicas que tenemos activadas por defecto.

El resto de cookies sirven para mejorar nuestra página, para personalizarla en base a tus preferencias, o para poder mostrarte publicidad ajustada a tus búsquedas, gustos e intereses personales. Puedes aceptar todas estas cookies pulsando el botón ACEPTA TODO o configurarlas o rechazar su uso clicando en el apartado CONFIGURACIÓN DE COOKIES.

Si quires más información, consulta la “POLITICA COOKIES” de nuestra página web.